Rademacher variables in connection with complex scalars.
It is proved that if a Frechet space has property, then also has property, for .
For 0 ≤ α < 1, an operator U ∈ L(X,Y) is called a rank α operator if implies Uxₙ → Ux in norm. We give some results on rank α operators, including an interpolation result and a characterization of rank α operators U: C(T,X) → Y in terms of their representing measures.
It is shown that the existence of a biseparating map between a large class of spaces of vector-valued continuous functions A(X,E) and A(Y,F) implies that some compactifications of X and Y are homeomorphic. In some cases, conditions are given to warrant the existence of a homeomorphism between the realcompactifications of X and Y; in particular we find remarkable differences with respect to the scalar context: namely, if E and F are infinite-dimensional and T: C*(X,E) → C*(Y,F) is a biseparating...
This paper deals with regulated functions having values in a Banach space. In particular, families of equiregulated functions are considered and criteria for relative compactness in the space of regulated functions are given.
In the paper [5] L. Drewnowski and the author proved that if is a Banach space containing a copy of then is not complemented in and conjectured that the same result is true if is any Banach space without the Radon-Nikodym property. Recently, F. Freniche and L. Rodriguez-Piazza ([7]) disproved this conjecture, by showing that if is a finite measure and is a Banach lattice not containing copies of , then is complemented in . Here, we show that the complementability of in together...
We present a Riesz type representation theorem for multilinear operators defined on the product of C(K,X) spaces with values in a Banach space. In order to do this we make a brief exposition of the theory of operator valued polymeasures.