Previous Page 13

Displaying 241 – 251 of 251

Showing per page

Countable tightness in the spaces of regular probability measures

Grzegorz Plebanek, Damian Sobota (2015)

Fundamenta Mathematicae

We prove that if K is a compact space and the space P(K × K) of regular probability measures on K × K has countable tightness in its weak* topology, then L₁(μ) is separable for every μ ∈ P(K). It has been known that such a result is a consequence of Martin's axiom MA(ω₁). Our theorem has several consequences; in particular, it generalizes a theorem due to Bourgain and Todorčević on measures on Rosenthal compacta.

Countably evaluating homomorphisms on real function algebras

Eva Adam, Peter Biström, Andreas Kriegl (1999)

Archivum Mathematicum

By studying algebra homomorphisms, which act as point evaluations on each countable subset, we obtain improved results on the question when all algebra homomorphisms are point evaluations.

Criteria for k M < in Musielak-Orlicz spaces

Lianying Cao, Ting Fu Wang (2001)

Commentationes Mathematicae Universitatis Carolinae

In this paper, some necessary and sufficient conditions for sup { k x : x 0 = 1 } < in Musielak-Orlicz function spaces as well as in Musielak-Orlicz sequence spaces are given.

Criteria for weak compactness of vector-valued integration maps

Susumu Okada, Werner J. Ricker (1994)

Commentationes Mathematicae Universitatis Carolinae

Criteria are given for determining the weak compactness, or otherwise, of the integration map associated with a vector measure. For instance, the space of integrable functions of a weakly compact integration map is necessarily normable for the mean convergence topology. Results are presented which relate weak compactness of the integration map with the property of being a bicontinuous isomorphism onto its range. Finally, a detailed description is given of the compactness properties for the integration...

Critical imbeddings with multivariate rearrangements

Miroslav Krbec, Hans-Jürgen Schmeisser (2007)

Studia Mathematica

We are concerned with imbeddings of general spaces of Besov and Lizorkin-Triebel type with dominating mixed derivatives in the first critical case. We employ multivariate exponential Orlicz and Lorentz-Orlicz spaces as targets. We study basic properties of the target spaces, in particular, we compare them with usual exponential spaces, showing that in this case the multivariate clones are in fact better adapted to the character of smoothness of the imbedded spaces. Then we prove sharp limiting imbedding...

Currently displaying 241 – 251 of 251

Previous Page 13