extensions of functions and stabilization of Glaeser refinements.
We consider a class of Nemytskii superposition operators that covers the nonlinear part of traveling wave models from laser dynamics, population dynamics, and chemical kinetics. Our main result is the -continuity property of these operators over Sobolev-type spaces of periodic functions.
As usual will denote the ring of real-valued continuous functions on a Tychonoff space . It is well-known that if and are realcompact spaces such that and are isomorphic, then and are homeomorphic; that is determines. The restriction to realcompact spaces stems from the fact that and are isomorphic, where is the (Hewitt) realcompactification of . In this note, a class of locally compact spaces that includes properly the class of locally compact realcompact spaces is exhibited...
On montre que les fonctions qui opèrent, par composition a gauche, sur l’espace de Besov d’exposant , avec , dans l’espace euclidien de dimension , sont précisément les fonctions lipschitziennes.
We examine conditions under which a pair of rearrangement invariant function spaces on [0,1] or [0,∞) form a Calderón couple. A very general criterion is developed to determine whether such a pair is a Calderón couple, with numerous applications. We give, for example, a complete classification of those spaces X which form a Calderón couple with We specialize our results to Orlicz spaces and are able to give necessary and sufficient conditions on an Orlicz function F so that the pair forms a...
We introduce a class of weights for a which a rich theory of real interpolation can be developed. In particular it led us to extend the commutator theorems associated to this method.
In this paper we use the Calderón-Zygmund operator theory to prove a Calderón type reproducing formula associated with a para-accretive function. Using our Calderón-type reproducing formula we introduce a new class of the Besov and Triebel-Lizorkin spaces and prove a Tb theorem for these new spaces.
It is known that is not amenable for p = 1,2,∞, but whether or not is amenable for p ∈ (1,∞) ∖ 2 is an open problem. We show that, if is amenable for p ∈ (1,∞), then so are and . Moreover, if is amenable so is for any index set and for any infinite-dimensional -space E; in particular, if is amenable for p ∈ (1,∞), then so is . We show that is not amenable for p = 1,∞, but also that our methods fail us if p ∈ (1,∞). Finally, for p ∈ (1,2) and a free ultrafilter over ℕ, we exhibit...
It is proved (independently of the result of Holmes [Fund. Math. 140 (1992)]) that the dual space of the uniform closure of the linear span of the maps x ↦ d(x,a) - d(x,b), where d is the metric of the Urysohn space of diameter r, is (isometrically if r = +∞) isomorphic to the space of equivalence classes of all real-valued Lipschitz maps on . The space of all signed (real-valued) Borel measures on is isometrically embedded in the dual space of and it is shown that the image of the embedding...
These notes are devoted to the analysis on a capacity space, with capacities as substitutes of measures of the Orlicz function spaces. The goal is to study some aspects of the classical theory of Orlicz spaces for these spaces including the classical theory of interpolation.
In this article a general result on smooth truncation of Riesz and Bessel potentials in Orlicz-Sobolev spaces is given and a capacitary type estimate is presented. We construct also a space of quasicontinuous functions and an alternative characterization of this space and a description of its dual are established. For the Riesz kernel Rm, we prove that operators of strong type (A, A), are also of capacitaries strong and weak types (m,A).
On étudie les espaces de Sobolev construits sur un espace localement convexe muni d’une mesure gaussienne centree . Si est de Radon, on démontre que les capacités naturelles sont tendues sur les compacts. Cela résulte d’un principe général relatif aux quasi-normes.On s’intéresse également aux fonctions quasi-continues a valeurs banachiques, ce qui est utile pour les propriétés de Nikodym, et à des applications à la continuité des trajectoires des intégrales stochastiques.
Given a subring of the ring of formal power series defined by the growth of the coefficients, we prove a necessary and sufficient condition for it to be a noetherian ring. As a particular case, we show that the ring of Gevrey power series is a noetherian ring. Then, we get a spectral synthesis theorem for some classes of ultradifferentiable functions.
En el presente artículo se expone de modo resumido una caracterización de los anillos de funciones diferenciables de una variedad.