on spaces of homogeneous type: a density result on - spaces.
We investigate a scale of -spaces defined with the help of certain Lorentz norms. The results are applied to extrapolation techniques concerning operators defined on adapted sequences. Our extrapolation works simultaneously with two operators, starts with --estimates, and arrives at --estimates, or more generally, at estimates between K-functionals from interpolation theory.
This paper is meant as a (short and partial) introduction to the study of the geometry of Carnot groups and, more generally, of Carnot-Carathéodory spaces associated with a family of Lipschitz continuous vector fields. My personal interest in this field goes back to a series of joint papers with E. Lanconelli, where this notion was exploited for the study of pointwise regularity of weak solutions to degenerate elliptic partial differential equations. As stated in the title, here we are mainly concerned...
We characterize Baire-like spaces Cc(X,E) of continuous functions defined on a locally compact and Hewitt space X into a locally convex space E endowed with the compact-open topology.
We study Banach spaces X with subspaces Y whose unit ball is densely remotal in X. We show that for several classes of Banach spaces, the unit ball of the space of compact operators is densely remotal in the space of bounded operators. We also show that for several classical Banach spaces, the unit ball is densely remotal in the duals of higher even order. We show that for a separable remotal set E ⊆ X, the set of Bochner integrable functions with values in E is a remotal set in L¹(μ,X).
We provide a structure theorem for Carnot-Carathéodory balls defined by a family of Lipschitz continuous vector fields. From this result a proof of Poincaré inequality follows.
Let MX,w(ℝ) denote the algebra of the Fourier multipliers on a separable weighted Banach function space X(ℝ,w).We prove that if the Cauchy singular integral operator S is bounded on X(ℝ, w), thenMX,w(ℝ) is continuously embedded into L∞(ℝ). An important consequence of the continuous embedding MX,w(ℝ) ⊂ L∞(ℝ) is that MX,w(ℝ) is a Banach algebra.
We use the work of J. Bourgain to show that some uniform algebras of analytic functions have certain Banach space properties. If X is a Banach space, we say X is strongif X and X* have the Dunford-Pettis property, X has the Pełczyński property, and X* is weakly sequentially complete. Bourgain has shown that the ball-algebras and the polydisk-algebras are strong Banach spaces. Using Bourgain’s methods, Cima and Timoney have shown that if K is a compact planar set and A is R(K) or A(K), then A and...
We solve several problems in the theory of polynomials in Banach spaces. (i) There exist Banach spaces without the Dunford-Pettis property and without upper p-estimates in which all multilinear forms are weakly sequentially continuous: some Lorentz sequence spaces, their natural preduals and, most notably, the dual of Schreier's space. (ii) There exist Banach spaces X without the Dunford-Pettis property such that all multilinear forms on X and X* are weakly sequentially continuous; this gives an...
It is proved that for any Banach space X property (β) defined by Rolewicz in [22] implies that both X and X* have the Banach-Saks property. Moreover, in Musielak-Orlicz sequence spaces, criteria for the Banach-Saks property, the near uniform convexity, the uniform Kadec-Klee property and property (H) are given.