Displaying 301 – 320 of 425

Showing per page

An example of a reflexive Lorentz Gamma space with trivial Boyd and Zippin indices

Alexei Karlovich, Eugene Shargorodsky (2021)

Czechoslovak Mathematical Journal

We show that for every p ( 1 , ) there exists a weight w such that the Lorentz Gamma space Γ p , w is reflexive, its lower Boyd and Zippin indices are equal to zero and its upper Boyd and Zippin indices are equal to one. As a consequence, the Hardy-Littlewood maximal operator is unbounded on the constructed reflexive space Γ p , w and on its associate space Γ p , w ' .

An indecomposable Banach space of continuous functions which has small density

Rogério Augusto dos Santos Fajardo (2009)

Fundamenta Mathematicae

Using the method of forcing we construct a model for ZFC where CH does not hold and where there exists a connected compact topological space K of weight ω < 2 ω such that every operator on the Banach space of continuous functions on K is multiplication by a continuous function plus a weakly compact operator. In particular, the Banach space of continuous functions on K is indecomposable.

An inequality in Orlicz function spaces with Orlicz norm

Jin Cai Wang (2003)

Commentationes Mathematicae Universitatis Carolinae

We use Simonenko quantitative indices of an 𝒩 -function Φ to estimate two parameters q Φ and Q Φ in Orlicz function spaces L Φ [ 0 , ) with Orlicz norm, and get the following inequality: B Φ B Φ - 1 q Φ Q Φ A Φ A φ - 1 , where A Φ and B Φ are Simonenko indices. A similar inequality is obtained in L Φ [ 0 , 1 ] with Orlicz norm.

Currently displaying 301 – 320 of 425