An up-wind finite element method for a filtration problem
The notion of non-orthogonal multi-resolution analysis and its compatibility with differentiation (as expressed by the commutation formula) lead us to the construction of a multi-resolution analysis of L2(Rn)n which is well adapted to the approximation of divergence-free vector functions. Thus, we obtain unconditional bases of compactly supported divergence-free vector wavelets.
This paper deals with approximation numbers of the compact trace operator of an anisotropic Besov space into some Lp-space,trΓ: Bpps,a (Rn) → Lp(Γ), s > 0, 1 < p < ∞,where Γ is an anisotropic d-set, 0 < d < n. We also prove homogeneity estimates, a homogeneous equivalent norm and the localization property in Bpps,a.