The construction of normal bases for the space of continuous functions on , with the aid of operators
Let (Ω,Σ,μ) be a measure space with two sets A,B ∈ Σ such that 0 < μ (A) < 1 < μ (B) < ∞ and suppose that ϕ and ψ are arbitrary bijections of [0,∞) such that ϕ(0) = ψ(0) = 0. The main result says that if for all μ-integrable nonnegative step functions x,y then ϕ and ψ must be conjugate power functions. If the measure space (Ω,Σ,μ) has one of the following properties: (a) μ (A) ≤ 1 for every A ∈ Σ of finite measure; (b) μ (A) ≥ 1 for every A ∈ Σ of positive measure, then there exist...
In Orlicz spaces, the necessary and sufficient conditions of strongly exposed points are given.
Si prova l'esistenza di un'unica soluzione debole che dipende con continuità dai dati al contorno per il problema lineare di Molodenskii in approssimazione quasi sferica, nel caso che la superficie al contorno soddisfi una condizione di cono. Si segue un approccio costruttivo diretto, che generalizza una procedura precedentemente elaborata per il problema semplice di Molodenskii. Inoltre si prova che la soluzione ha derivate prime a quadrato integrabile al contorno, il che è essenziale per le applicazioni...
In this paper we modify a construction due to J. Taskinen to get a Fréchet space F which satisfies the density condition such that the complete injective tensor product l2 x~eF'b does not satisfy the strong dual density condition of Bierstedt and Bonet. In this way a question that remained open in Heinrichs (1997) is solved.
We present a detailed proof of the density of the set in the space of test functions that vanish on some part of the boundary of a bounded domain .
A proof is given of the following theorem: infinitely differentiable solenoidal vector - functions are dense in the space of functions, which are solenoidal in the distribution sense only. The theorem is utilized in proving the convergence of a dual finite element procedure for Dirichlet, Neumann and a mixed boundary value problem of a second order elliptic equation.