Displaying 581 – 600 of 1085

Showing per page

On integration of vector functions with respect to vector measures

José Rodríguez (2006)

Czechoslovak Mathematical Journal

We study integration of Banach space-valued functions with respect to Banach space-valued measures. We focus our attention on natural extensions to this setting of the Birkhoff and McShane integrals. The corresponding generalization of the Birkhoff integral was first considered by Dobrakov under the name S * -integral. Our main result states that S * -integrability implies McShane integrability in contexts in which the later notion is definable. We also show that a function is measurable and McShane integrable...

On inverses of δ -convex mappings

Jakub Duda (2001)

Commentationes Mathematicae Universitatis Carolinae

In the first part of this paper, we prove that in a sense the class of bi-Lipschitz δ -convex mappings, whose inverses are locally δ -convex, is stable under finite-dimensional δ -convex perturbations. In the second part, we construct two δ -convex mappings from 1 onto 1 , which are both bi-Lipschitz and their inverses are nowhere locally δ -convex. The second mapping, whose construction is more complicated, has an invertible strict derivative at 0 . These mappings show that for (locally) δ -convex mappings...

On multilinear generalizations of the concept of nuclear operators

Dahmane Achour, Ahlem Alouani (2010)

Colloquium Mathematicae

This paper introduces the class of Cohen p-nuclear m-linear operators between Banach spaces. A characterization in terms of Pietsch's domination theorem is proved. The interpretation in terms of factorization gives a factorization theorem similar to Kwapień's factorization theorem for dominated linear operators. Connections with the theory of absolutely summing m-linear operators are established. As a consequence of our results, we show that every Cohen p-nuclear (1 < p ≤ ∞ ) m-linear mapping...

On multilinear mappings attaining their norms.

Maria Acosta (1998)

Studia Mathematica

We show, for any Banach spaces X and Y, the denseness of the set of bilinear forms on X × Y whose third Arens transpose attains its norm. We also prove the denseness of the set of norm attaining multilinear mappings in the class of multilinear mappings which are weakly continuous on bounded sets, under some additional assumptions on the Banach spaces, and give several examples of classical spaces satisfying these hypotheses.

On multilinear mappings of nuclear type.

Mário C. Matos (1993)

Revista Matemática de la Universidad Complutense de Madrid

The space of multilinear mappings of nuclear type (s;r1,...,rn) between Banach spaces is considered, some of its properties are described (including the relationship with tensor products) and its topological dual is characterized as a Banach space of absolutely summing mappings.

On non-Uniqueness of Complex Geodesies in Convex Bounded Domains

Graziano Gentili (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si studiano «combinazioni convesse complesse» per mappe olomorfe dal disco unità di in un dominio convesso limitato D di uno spazio di Banach complesso E , e se ne traggono conseguenze sul carattere globale della non unicità per le geodetiche complesse di D .

Currently displaying 581 – 600 of 1085