Page 1 Next

Displaying 1 – 20 of 43

Showing per page

Embedding c 0 in bvca ( Σ , X )

Juan Carlos Ferrando, L. M. Sánchez Ruiz (2007)

Czechoslovak Mathematical Journal

If ( Ω , Σ ) is a measurable space and X a Banach space, we provide sufficient conditions on Σ and X in order to guarantee that b v c a ( Σ , X ) , the Banach space of all X -valued countably additive measures of bounded variation equipped with the variation norm, contains a copy of c 0 if and only if X does.

Entire functions uniformly bounded on balls of a Banach space

José M. Ansemil, Jerónimo López-Salazar, Socorro Ponte (2011)

Studia Mathematica

Let X be an infinite-dimensional complex Banach space. Very recently, several results on the existence of entire functions on X bounded on a given ball B₁ ⊂ X and unbounded on another given ball B₂ ⊂ X have been obtained. In this paper we consider the problem of finding entire functions which are uniformly bounded on a collection of balls and unbounded on the balls of some other collection.

Equivariant measurable liftings

Nicolas Monod (2015)

Fundamenta Mathematicae

We discuss equivariance for linear liftings of measurable functions. Existence is established when a transformation group acts amenably, as e.g. the Möbius group of the projective line. Since the general proof is very simple but not explicit, we also provide a much more explicit lifting for semisimple Lie groups acting on their Furstenberg boundary, using unrestricted Fatou convergence. This setting is relevant to L -cocycles for characteristic classes.

Espaces de Sobolev gaussiens

Denis Feyel, A. de La Pradelle (1989)

Annales de l'institut Fourier

Soit μ une mesure gaussienne sur un espace localement convexe E . On donne un nouveau point de vue sur le premier espace de Sobolev W ( E , μ ) construit sur E et μ . La différentielle f ' de f W ( E , μ ) est une fonction de deux variables ( x , y ) E × E , “quasi-linéaire” dans la seconde variable.La différentielle d’une intégrale stochastique est une intégrale stochastique sur E × E muni de μ × μ .On montre que la “procapacité gaussienne” naturelle est une vraie capacité si E est un espace de Banach ou de Fréchet ou le dual faible d’un espace...

Currently displaying 1 – 20 of 43

Page 1 Next