Über homöomorphe und differenzierbare Abbildungen N.A. Banachräume.
Se prueba que si f es una aplicación de clase p en un abierto de un cuadrante de un espacio de Banach real, entonces en cada punto del abierto, f admite una extensión de clase p a un entorno global de dicho punto.Se utiliza este resultado para establecer un teorema de extensión de Whitney en un cuadrante de un espacio de Banach y un teorema de la función inversa en variedades con borde anguloso.
A partir de un espacio de Hilbert, E, de dimensión infinita separable y de un elemento λ de L(E,R) - {0} se construye un homeomorfismo h0 de(Eλ+ - Ker λ) U {0}sobre E con las topologías usuales tal que h0(0) = 0 y h0|Eλ+ - Ker λ es un difeomorfismo de clase ∞ de Eλ+ - Ker λ sobre E - {0}, con las estructuras diferenciables de clase ∞ usuales. Mediante h0 se construye una variedad diferenciable de dimensión infinita, separada y no regular.
Let χ(m,n) be the unconditional basis constant of the monomial basis , α ∈ ℕ₀ⁿ with |α| = m, of the Banach space of all m-homogeneous polynomials in n complex variables, endowed with the supremum norm on the n-dimensional unit polydisc ⁿ. We prove that the quotient of and √(n/log n) tends to 1 as n → ∞. This reflects a quite precise dependence of χ(m,n) on the degree m of the polynomials and their number n of variables. Moreover, we give an analogous formula for m-linear forms, a reformulation...
Our aim is to introduce a new notion of unconditionallity, in the context of polynomials in Banach spaces, that looks directly to the polynomial topology defined on the involved spaces. This notion allows us to generalize some well-known relations of duality that appear in the linear context.
The aim of this paper is to show, among other things, that, in separable Banach spaces, the presence of the smoothness with the highest derivative Lipschitzian implies the uniform Gâteaux smoothness of degree 1 up.
Let X be a Banach space, a norming set and (X,B) the topology on X of pointwise convergence on B. We study the following question: given two (non-negative, countably additive and finite) measures μ₁ and μ₂ on Baire(X,w) which coincide on Baire(X,(X,B)), does it follow that μ₁ = μ₂? It turns out that this is not true in general, although the answer is affirmative provided that both μ₁ and μ₂ are convexly τ-additive (e.g. when X has the Pettis Integral Property). For a Banach space Y not containing...
We study analytic families of non-compact cycles, and prove there exists an analytic space of finite dimension, which gives a universal reparametrization of such a family, under some assumptions of regularity. Then we prove an analogous statement for meromorphic families of non-compact cycles. That is a new approach to Grauert’s results about meromorphic equivalence relations.
Here we study the existence of lower and upper -estimates of sequences in some Banach sequence spaces. We also compute the sharp estimates in their basis. Finally, we give some applications to weak sequential continuity of polynomials.