Page 1

Displaying 1 – 3 of 3

Showing per page

Ideal amenability of module extensions of Banach algebras

Eshaghi M. Gordji, F. Habibian, B. Hayati (2007)

Archivum Mathematicum

Let 𝒜 be a Banach algebra. 𝒜 is called ideally amenable if for every closed ideal I of 𝒜 , the first cohomology group of 𝒜 with coefficients in I * is zero, i.e. H 1 ( 𝒜 , I * ) = { 0 } . Some examples show that ideal amenability is different from weak amenability and amenability. Also for n N , 𝒜 is called n -ideally amenable if for every closed ideal I of 𝒜 , H 1 ( 𝒜 , I ( n ) ) = { 0 } . In this paper we find the necessary and sufficient conditions for a module extension Banach algebra to be 2-ideally amenable.

Injective semigroup-algebras

J. Green (1998)

Studia Mathematica

Semigroups S for which the Banach algebra 1 ( S ) is injective are investigated and an application to the work of O. Yu. Aristov is described.

Currently displaying 1 – 3 of 3

Page 1