Maximal ideals in algebras of vector-valued functions.
We introduce and study the metric or extreme versions of the notions of a flat and an injective normed module. The relevant definitions, in contrast with the standard known ones, take into account the exact value of the norm of the module. The main result gives a full characterization of extremely flat objects within a certain category of normed modules. As a corollary, some Hahn-Banach type theorems for normed modules are obtained.
We define the concept of module Connes amenability for dual Banach algebras which are also Banach modules with a compatible action. We distinguish a closed subhypergroup K0 of a locally compact measured hypergroup K, and show that, under different actions, amenability of K, M.K0/-module Connes amenability of M.K/, and existence of a normal M.K0/-module virtual diagonal are related.