Page 1

Displaying 1 – 12 of 12

Showing per page

Solved and unsolved problems in generalized notions of amenability for Banach algebras

Yong Zhang (2010)

Banach Center Publications

We survey the recent investigations on approximate amenability/contractibility and pseudo-amenability/contractibility for Banach algebras. We will discuss the core problems concerning these notions and address the significance of any solutions to them to the development of the field. A few new results are also included.

Some module cohomological properties of Banach algebras

Elham Ilka, Amin Mahmoodi, Abasalt Bodaghi (2020)

Mathematica Bohemica

We find some relations between module biprojectivity and module biflatness of Banach algebras 𝒜 and and their projective tensor product 𝒜 ^ . For some semigroups S , we study module biprojectivity and module biflatness of semigroup algebras l 1 ( S ) .

Stability of commuting maps and Lie maps

J. Alaminos, J. Extremera, Š. Špenko, A. R. Villena (2012)

Studia Mathematica

Let A be an ultraprime Banach algebra. We prove that each approximately commuting continuous linear (or quadratic) map on A is near an actual commuting continuous linear (resp. quadratic) map on A. Furthermore, we use this analysis to study how close are approximate Lie isomorphisms and approximate Lie derivations to actual Lie isomorphisms and Lie derivations, respectively.

Strongly compact algebras.

Miguel Lacruz, Victor Lomonosov, Luis Rodríguez Piazza (2006)

RACSAM

An algebra of bounded linear operators on a Hilbert space is said to be strongly compact if its unit ball is relatively compact in the strong operator topology. A bounded linear operator on a Hilbert space is said to be strongly compact if the algebra generated by the operator and the identity is strongly compact. This notion was introduced by Lomonosov as an approach to the invariant subspace problem for essentially normal operators. First of all, some basic properties of strongly compact algebras...

Structure theory of homologically trivial and annihilator locally C*-algebras

Alexei Yu. Pirkovskii, Yurii V. Selivanov (2010)

Banach Center Publications

We study the structure of certain classes of homologically trivial locally C*-algebras. These include algebras with projective irreducible Hermitian A-modules, biprojective algebras, and superbiprojective algebras. We prove that, if A is a locally C*-algebra, then all irreducible Hermitian A-modules are projective if and only if A is a direct topological sum of elementary C*-algebras. This is also equivalent to A being an annihilator (dual, complemented, left quasi-complemented, or topologically...

Currently displaying 1 – 12 of 12

Page 1