Higher-dimensional weak amenability
Bade, Curtis and Dales have introduced the idea of weak amenability. A commutative Banach algebra A is weakly amenable if there are no non-zero continuous derivations from A to A*. We extend this by defining an alternating n-derivation to be an alternating n-linear map from A to A* which is a derivation in each of its variables. Then we say that A is n-dimensionally weakly amenable if there are no non-zero continuous alternating n-derivations on A. Alternating n-derivations are the same as alternating...