The Wiener Property for a Class of Discrete Hypergroups.
By definition a totally convex algebra is a totally convex space equipped with an associative multiplication, i.eȧ morphism of totally convex spaces. In this paper we introduce, for such algebras, the notions of ideal, tensor product, unitization, inverses, weak inverses, quasi-inverses, weak quasi-inverses and the spectrum of an element and investigate them in detail. This leads to a considerable generalization of the corresponding notions and results in the theory of Banach spaces.
Let G be the multiplicative group of invertible elements of E(X), the algebra of all bounded linear operators on a Banach space X. In 1945 Mackey showed that if and are any two sets of linearly independent elements of X with the same number of items, then there exists T ∈ G so that , . We prove that some proper multiplicative subgroups of G have this property.
The existence of unbounded *-representations of (locally convex) tensor product *-algebras is investigated, in terms of the existence of unbounded *-representations of the (locally convex) factors of the tensor product and vice versa.
Let A be an A*-algebra with enveloping C*-algebra C*(A). We show that, under certain conditions, a homomorphism from C*(A) into a Banach algebra is continuous if and only if its restriction to A is continuous. We apply this result to the question in the title.
We generalize Wiener's inversion theorem for Fourier transforms on closed subsets of the dual group of a locally compact abelian group to cosets of ideals in a class of non-commutative *-algebras having specified properties, which are all fulfilled in the case of the group algebra of any locally compact abelian group.