Random matrices, amalgamated free products and subfactors of the von Neumann algebra of a free group, of noninteger index.
In this article we discuss the Catalan and super-Catalan (or Schröder) numbers. We start with some combinatorial interpretations of those numbers. We study two probability measures in the context of free probability, one whose moments are super-Catalan, and another, whose even moments are super-Catalan and odd moments are zero. With the use of the latter we also show some new formulae for evaluation of the Catalans in terms of super-Catalans and vice-versa.
We will show that the conditional first moment of the free deformed Poisson random variables (q = 0) corresponding to operators fulfilling the free relation is a linear function of the regression and the conditional variance also is a linear function of the regression. For this purpose we will first demonstrate some properties of the Wick product and then we will concentrate on the free deformed Poisson random variables.