On Lax pairs and matrix extended simple Toda systems.
We review the notion of simple compact quantum groups and examples, and discuss the problem of construction and classification of simple compact quantum groups.
We define algebraic families of (all) morphisms which are purely algebraic analogs of quantum families of (all) maps introduced by P. M. Sołtan. Also, algebraic families of (all) isomorphisms are introduced. By using these notions we construct two classes of Hopf-algebras which may be interpreted as the quantum group of all maps from a finite space to a quantum group, and the quantum group of all automorphisms of a finite noncommutative (NC) space. As special cases three classes of NC objects are...