La categorie Abelienne des quotients de type
We construct the category of quotients of -spaces and we show that it is Abelian. This answers a question of L. Waelbroeck from 1990.
We construct the category of quotients of -spaces and we show that it is Abelian. This answers a question of L. Waelbroeck from 1990.
In addition to Pisier’s counterexample of a non-accessible maximal Banach ideal, we will give a large class of maximal Banach ideals which are accessible. The first step is implied by the observation that a “good behaviour” of trace duality, which is canonically induced by conjugate operator ideals can be extended to adjoint Banach ideals, if and only if these adjoint ideals satisfy an accessibility condition (theorem 3.1). This observation leads in a natural way to a characterization of accessible...
The problem of topologies of Grothendieck is considered for complete tensor products of Fréchet spaces endowed with the topology defined by an arbitrary tensor norm. Some consequences on the stability of certain locally convex properties in spaces of operators are also given.
A new class of linear and bounded operators is introduced. This class is more general than the classes of operators from [4], [5] and [8]. Using this class lΦ,φ we also introduce a class of locally convex spaces which is more general than the classes of the nuclear spaces [2], [3] and φ-nuclear spaces [6]. For this class of operators similar properties are established to those of the well known classes lp, lφ, lΦ and also the stability of the tensor product is proved. The stability of the tensor...