The search session has expired. Please query the service again.
We show that if is a boundedly complete, unconditional Schauder decomposition of a Banach space X, then X is weakly sequentially complete whenever is weakly sequentially complete for each k ∈ ℕ. Then through semi-embeddings, we give a new proof of Lewis’s result: if one of Banach spaces X and Y has an unconditional basis, then X ⊗̂ Y, the projective tensor product of X and Y, is weakly sequentially complete whenever both X and Y are weakly sequentially complete.
The positive and negative results related to the problem of topologies of Grothendieck [2] have given many information on the projective and injective tensor products of Fréchet and DF-spaces. The purpose of this paper is to give some results about analogous questions in αpq-Lapresté's tensor products [4, chapitre 1] and in spaces of dominated operators Pietsch [5] for a class of Fréchet spaces having a certain kind of decomposition studied dy Bonet and Díaz [1] called T-decomposition. After that...
We define the ε-product of an εb-space by quotient bornological spaces and we show that if G is a Schwartz εb-space and E|F is a quotient bornological space, then their εc-product Gεc(E|F) defined in [2] is isomorphic to the quotient bornological space (GεE)|(GεF).
Some results are presented, concerning a class of Banach spaces introduced by G. Godefroy and M. Talagrand, the representable Banach spaces. The main aspects considered here are the stability in forming tensor products, and the topological properties of the weak* dual unitball.
Para un b-espacio nuclear N y un b-espacio E demostramos que si X es un espacio compacto entonces los b-espacios C (X,NεE) y NεC (X,E) son isomorfos. El mismo resultado se verifica también si X es un espacio localmente compacto que es numerable en el infinito.
Let Y be a Banach space and let be a subspace of an space, for some p ∈ (1,∞). We consider two operators B and C acting on S and Y respectively and satisfying the so-called maximal regularity property. Let ℬ and be their natural extensions to . We investigate conditions that imply that ℬ + is closed and has the maximal regularity property. Extending theorems of Lamberton and Weis, we show in particular that this holds if Y is a UMD Banach lattice and is a positive contraction on for any...
Currently displaying 1 –
20 of
23