Page 1

Displaying 1 – 13 of 13

Showing per page

Density conditions in Fréchet and (DF)-spaces.

Klaus-Dieter. Bierstedt, José Bonet (1989)

Revista Matemática de la Universidad Complutense de Madrid

We survey our main results on the density condition for Fréchet spaces and on the dual density condition for (DF)-spaces (cf. Bierstedt and Bonet (1988)) as well as some recent developments.

Diagonals of projective tensor products and orthogonally additive polynomials

Qingying Bu, Gerard Buskes (2014)

Studia Mathematica

Let E be a Banach space with 1-unconditional basis. Denote by Δ ( ̂ n , π E ) (resp. Δ ( ̂ n , s , π E ) ) the main diagonal space of the n-fold full (resp. symmetric) projective Banach space tensor product, and denote by Δ ( ̂ n , | π | E ) (resp. Δ ( ̂ n , s , | π | E ) ) the main diagonal space of the n-fold full (resp. symmetric) projective Banach lattice tensor product. We show that these four main diagonal spaces are pairwise isometrically isomorphic, and in addition, that they are isometrically lattice isomorphic to E [ n ] , the completion of the n-concavification of...

Dual Banach algebras: representations and injectivity

Matthew Daws (2007)

Studia Mathematica

We study representations of Banach algebras on reflexive Banach spaces. Algebras which admit such representations which are bounded below seem to be a good generalisation of Arens regular Banach algebras; this class includes dual Banach algebras as defined by Runde, but also all group algebras, and all discrete (weakly cancellative) semigroup algebras. Such algebras also behave in a similar way to C*- and W*-algebras; we show that interpolation space techniques can be used in place of GNS type arguments....

Currently displaying 1 – 13 of 13

Page 1