Ideals in a C*-Algebra.
Se introducen los ideales de operadores que admiten extensión o levantamiento y se presenta una nueva aproximación al estudio de la escisión de sucesiones exactas cortas de espacios de Banach. Se considera la maximalidad de estos ideales y se investiga si son cerrados respecto de los límites puntuales acotados. Se resumen algunos ejemplos y se clarifica el papel de los espacios L1 y L∞.
Let L be a normal Banach sequence space such that every element in L is the limit of its sections and let E = ind En be a separated inductive limit of the locally convex spaces. Then ind L(En) is a topological subspace of L(E).
Some examples of the close interaction between inequalities and interpolation are presented and discussed. An interpolation technique to prove generalized Clarkson inequalities is pointed out. We also discuss and apply to the theory of interpolation the recently found facts that the Gustavsson-Peetre class P+- can be described by one Carlson type inequality and that the wider class P0 can be characterized by another Carlson type inequality with blocks.