The search session has expired. Please query the service again.
The positive and negative results related to the problem of topologies of Grothendieck [2] have given many information on the projective and injective tensor products of Fréchet and DF-spaces. The purpose of this paper is to give some results about analogous questions in αpq-Lapresté's tensor products [4, chapitre 1] and in spaces of dominated operators Pietsch [5] for a class of Fréchet spaces having a certain kind of decomposition studied dy Bonet and Díaz [1] called T-decomposition. After that...
We investigate some homological notions of Banach algebras. In particular, for a locally compact group G we characterize the most important properties of G in terms of some homological properties of certain Banach algebras related to this group. Finally, we use these results to study generalized biflatness and biprojectivity of certain products of Segal algebras on G.
For a closed subset I of the interval [0,1] we let A(I) = [v1(I),C(I)](1/2)2. We show that A(I) is isometric to a 1-complemented subspace of A(0,1), and that the Szlenk index of A(I) is larger than the Cantor index of I. We also investigate, for ordinals η < ω1, the bases structures of A(η), A*(η), and [the isometric predual of A(η)]. All the results of this paper extend, with obvious changes in the proofs, to the interpolation spaces .
We define the ε-product of an εb-space by quotient bornological spaces and we show that if G is a Schwartz εb-space and E|F is a quotient bornological space, then their εc-product Gεc(E|F) defined in [2] is isomorphic to the quotient bornological space (GεE)|(GεF).
Some results are presented, concerning a class of Banach spaces introduced by G. Godefroy and M. Talagrand, the representable Banach spaces. The main aspects considered here are the stability in forming tensor products, and the topological properties of the weak* dual unitball.
Para un b-espacio nuclear N y un b-espacio E demostramos que si X es un espacio compacto entonces los b-espacios C (X,NεE) y NεC (X,E) son isomorfos. El mismo resultado se verifica también si X es un espacio localmente compacto que es numerable en el infinito.
Currently displaying 21 –
40 of
78