Spectral mapping framework
In this paper we suggest a general framework of the spectral mapping theorem in terms of parametrized Banach space bicomplexes.
In this paper we suggest a general framework of the spectral mapping theorem in terms of parametrized Banach space bicomplexes.
We revisit the old result that biflat Banach algebras have the same cyclic cohomology as C, and obtain a quantitative variant (which is needed in separate, joint work of the author on the simplicial and cyclic cohomology of band semigroup algebras). Our approach does not rely on the Connes-Tsygan exact sequence, but is motivated strongly by its construction as found in [2] and [5].
Soit la -algèbre, ou bien réduite ou bien maximale, associée à la variété feuilletée , et la -algèbre élémentaire des opérateurs compacts. Alors, si dim, on montre que est isomorphe à .
We introduce an algebraic notion-stability-for an element of a commutative ring. It is shown that the stable elements of Banach algebras, and of Fréchet algebras, may be simply described. Part of the theory of power-series embeddings, given in [1] and [4], is seen to be of a purely algebraic nature. This approach leads to other natural questions.
The elementary theory of stable inverse-limit sequences, introduced in stable inverse-limit sequences, is used to extend the 'stability lemma' of automatic continuity theory.
The notion of a stable inverse-limit sequence is introduced. It provides a sufficient (and, for sequences of abelian groups, necessary) condition for the preservation of exactness by the inverse-limit functor. Examples of stable sequences are provided through the abstract Mittag-Leffler theorem; the results are applied in the theory of Fréchet algebras.
We will show that for each sequence of quasinormable Fréchet spaces there is a Köthe space λ such that and there are exact sequences of the form . If, for a fixed ℕ, is nuclear or a Köthe sequence space, the resolution above may be reduced to a short exact sequence of the form . The result has some applications in the theory of the functor in various categories of Fréchet spaces by providing a substitute for non-existing projective resolutions.
In this paper we introduce the sheaf of stratified Whitney jets of Gevrey order on the subanalytic site relative to a real analytic manifold . Then, we define stratified ultradistributions of Beurling and Roumieu type on . In the end, by means of stratified ultradistributions, we define tempered-stratified ultradistributions and we prove two results. First, if is a real surface, the tempered-stratified ultradistributions define a sheaf on the subanalytic site relative to . Second, the tempered-stratified...
We investigate the problem when the strong dual of a projective limit of (LB)-spaces coincides with the inductive limit of the strong duals. It is well-known that the answer is affirmative for spectra of Banach spaces if the projective limit is a quasinormable Fréchet space. In that case, the spectrum satisfies a certain condition which is called “strong P-type”. We provide an example which shows that strong P-type in general does not imply that the strong dual of the projective limit is the inductive...
We study the structure of certain classes of homologically trivial locally C*-algebras. These include algebras with projective irreducible Hermitian A-modules, biprojective algebras, and superbiprojective algebras. We prove that, if A is a locally C*-algebra, then all irreducible Hermitian A-modules are projective if and only if A is a direct topological sum of elementary C*-algebras. This is also equivalent to A being an annihilator (dual, complemented, left quasi-complemented, or topologically...