Displaying 601 – 620 of 856

Showing per page

Report on twisted sums of Banach spaces.

Félix Cabello, Jesús M. Fernández Castillo (1996)

Extracta Mathematicae

This note is to report some of the advances obtained as a follow-up of the book [2] on the topic of twisted sums of Banach spaces. Since this announcement is no longer enough to contain the theory being developed, we submit the interested reader to [2] and to [1], where full details and proofs shall appear.

Résumé des résultats essentiels dans la théorie des produits tensoriels topologiques et des espaces nucléaires

Alexander Grothendieck (1952)

Annales de l'institut Fourier

L’auteur donne un résumé des résultats essentiels de son travail “Produits tensoriels topologiques et espaces nucléaires” (à paraître dans Memoirs of the Am. Math. Soc.), en essayant de faire ressortir les idées directrices. Soient E et F deux espaces localement convexes, on définit d’abord deux topologies naturelles sur E F , qui donnent des complétés E ^ F et E ^ ^ F , qu’on explicite dans divers cas importants, et dont on élucide les propriétés algébrico-topologiques, notamment à l’égard de la notion de produit...

Section spaces of real analytic vector bundles and a theorem of Grothendieck and Poly

Dietmar Vogt (2010)

Banach Center Publications

The structure of the section space of a real analytic vector bundle on a real analytic manifold X is studied. This is used to improve a result of Grothendieck and Poly on the zero spaces of elliptic operators and to extend a result of Domański and the author on the non-existence of bases to the present case.

Semi-embeddings and weakly sequential completeness of the projective tensor product

Qingying Bu (2005)

Studia Mathematica

We show that if P k is a boundedly complete, unconditional Schauder decomposition of a Banach space X, then X is weakly sequentially complete whenever P k X is weakly sequentially complete for each k ∈ ℕ. Then through semi-embeddings, we give a new proof of Lewis’s result: if one of Banach spaces X and Y has an unconditional basis, then X ⊗̂ Y, the projective tensor product of X and Y, is weakly sequentially complete whenever both X and Y are weakly sequentially complete.

Sequential retractivities and regularity on inductive limits

Qiu Jing-Hui (2000)

Czechoslovak Mathematical Journal

In this paper we prove the following result: an inductive limit ( E , t ) = ind ( E n , t n ) is regular if and only if for each Mackey null sequence ( x k ) in ( E , t ) there exists n = n ( x k ) such that ( x k ) is contained and bounded in ( E n , t n ) . From this we obtain a number of equivalent descriptions of regularity.

Currently displaying 601 – 620 of 856