Renormage de certains espaces d'operateurs.
This note is to report some of the advances obtained as a follow-up of the book [2] on the topic of twisted sums of Banach spaces. Since this announcement is no longer enough to contain the theory being developed, we submit the interested reader to [2] and to [1], where full details and proofs shall appear.
L’auteur donne un résumé des résultats essentiels de son travail “Produits tensoriels topologiques et espaces nucléaires” (à paraître dans Memoirs of the Am. Math. Soc.), en essayant de faire ressortir les idées directrices. Soient et deux espaces localement convexes, on définit d’abord deux topologies naturelles sur , qui donnent des complétés et , qu’on explicite dans divers cas importants, et dont on élucide les propriétés algébrico-topologiques, notamment à l’égard de la notion de produit...
The structure of the section space of a real analytic vector bundle on a real analytic manifold X is studied. This is used to improve a result of Grothendieck and Poly on the zero spaces of elliptic operators and to extend a result of Domański and the author on the non-existence of bases to the present case.
We show that if is a boundedly complete, unconditional Schauder decomposition of a Banach space X, then X is weakly sequentially complete whenever is weakly sequentially complete for each k ∈ ℕ. Then through semi-embeddings, we give a new proof of Lewis’s result: if one of Banach spaces X and Y has an unconditional basis, then X ⊗̂ Y, the projective tensor product of X and Y, is weakly sequentially complete whenever both X and Y are weakly sequentially complete.
In this paper we prove the following result: an inductive limit is regular if and only if for each Mackey null sequence in there exists such that is contained and bounded in . From this we obtain a number of equivalent descriptions of regularity.