The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Approximation theory in the context of probability density function turns out to go beyond the classical idea of orthogonal projection. Special tools have to be designed so as to respect the nonnegativity of the approximate function. We develop here and justify from the theoretical point of view an approximation procedure introduced by Levermore [Levermore, J. Stat. Phys. 83 (1996) 1021–1065] and based on an entropy minimization principle under moment constraints. We prove in particular a global...
Approximation theory in the context of probability density
function turns out to go beyond the classical idea of orthogonal
projection. Special tools have to be designed so as to respect the
nonnegativity of the approximate function. We develop here and
justify from the theoretical point of view an approximation
procedure introduced by Levermore [Levermore, J. Stat. Phys.83 (1996) 1021–1065] and based on an
entropy minimization principle under moment constraints. We prove
in particular...
Entropic projections and dominating points are solutions to convex
minimization problems related to conditional laws of large
numbers. They appear in many areas of applied mathematics such as
statistical physics, information theory, mathematical statistics,
ill-posed inverse problems or large deviation theory. By means of convex conjugate
duality and functional analysis, criteria are derived for the
existence of entropic projections, generalized entropic
projections and dominating points. Representations...
In this paper, which is an extension of [4],
we first show the existence of solutions to
a class of Min Sup problems with
linked constraints, which satisfy a certain property. Then, we apply our result to a class of weak nonlinear bilevel
problems. Furthermore, for such a class of bilevel problems, we
give a relationship with appropriate d.c. problems concerning the
existence of solutions.
We prove that under some topological assumptions (e.g. if M has nonempty interior in X), a convex cone M in a linear topological space X is a linear subspace if and only if each convex functional on M has a convex extension on the whole space X.
Here we present an approximation method for a rather broad class of first order
variational problems in spaces of piece-wise constant functions over
triangulations of the base domain. The convergence of the method is based on an
inequality involving norms obtained by Nečas and on the general
framework of Γ-convergence theory.
Currently displaying 1 –
9 of
9