Displaying 21 – 40 of 348

Showing per page

A saddle-point approach to the Monge-Kantorovich optimal transport problem

Christian Léonard (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The Monge-Kantorovich problem is revisited by means of a variant of the saddle-point method without appealing to c-conjugates. A new abstract characterization of the optimal plans is obtained in the case where the cost function takes infinite values. It leads us to new explicit sufficient and necessary optimality conditions. As by-products, we obtain a new proof of the well-known Kantorovich dual equality and an improvement of the convergence of the minimizing sequences.

A saddle-point approach to the Monge-Kantorovich optimal transport problem

Christian Léonard (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The Monge-Kantorovich problem is revisited by means of a variant of the saddle-point method without appealing to c-conjugates. A new abstract characterization of the optimal plans is obtained in the case where the cost function takes infinite values. It leads us to new explicit sufficient and necessary optimality conditions. As by-products, we obtain a new proof of the well-known Kantorovich dual equality and an improvement of the convergence of the minimizing sequences.

A two-stage stochastic optimization model for a gas sale retailer

F. Maggioni, Maria Teresa Vespucci, E. Allevi, Marida Bertocchi, M. Innorta (2008)

Kybernetika

The paper deals with a new stochastic optimization model, named OMoGaS–SV (Optimization Modelling for Gas Seller–Stochastic Version), to assist companies dealing with gas retail commercialization. Stochasticity is due to the dependence of consumptions on temperature uncertainty. Due to nonlinearities present in the objective function, the model can be classified as an NLP mixed integer model, with the profit function depending on the number of contracts with the final consumers, the typology of...

A viscosity-proximal gradient method with inertial extrapolation for solving certain minimization problems in Hilbert space

L.O. Jolaoso, H.A. Abass, O.T. Mewomo (2019)

Archivum Mathematicum

In this paper, we study the strong convergence of the proximal gradient algorithm with inertial extrapolation term for solving classical minimization problem and finding the fixed points of δ -demimetric mapping in a real Hilbert space. Our algorithm is inspired by the inertial proximal point algorithm and the viscosity approximation method of Moudafi. A strong convergence result is achieved in our result without necessarily imposing the summation condition n = 1 β n x n - 1 - x n < + on the inertial term. Finally, we provide...

About steady transport equation I – L p -approach in domains with smooth boundaries

Antonín Novotný (1996)

Commentationes Mathematicae Universitatis Carolinae

We investigate the steady transport equation λ z + w · z + a z = f , λ > 0 in various domains (bounded or unbounded) with smooth noncompact boundaries. The functions w , a are supposed to be small in appropriate norms. The solution is studied in spaces of Sobolev type (classical Sobolev spaces, Sobolev spaces with weights, homogeneous Sobolev spaces, dual spaces to Sobolev spaces). The particular stress is put onto the problem to extend the results to as less regular vector fields w , a , as possible (conserving the requirement of...

Algebras of approximation sequences: Fredholm theory in fractal algebras

Steffen Roch (2002)

Studia Mathematica

The present paper is a continuation of [5, 7] where a Fredholm theory for approximation sequences is proposed and some of its properties and consequences are studied. Here this theory is specified to the class of fractal approximation methods. The main result is a formula for the so-called α-number of an approximation sequence (Aₙ) which is the analogue of the kernel dimension of a Fredholm operator.

Currently displaying 21 – 40 of 348