Displaying 81 – 100 of 184

Showing per page

Non-Archimedean K-spaces

Albert Kubzdela (2005)

Banach Center Publications

We study Banach spaces over a non-spherically complete non-Archimedean valued field K. We prove that a non-Archimedean Banach space over K which contains a linearly homeomorphic copy of l (hence l itself) is not a K-space. We discuss the three-space problem for a few properties of non-Archimedean Banach spaces.

Normal bases for the space of continuous functions defined on a subset of Zp.

Ann Verdoodt (1994)

Publicacions Matemàtiques

Let K be a non-archimedean valued field which contains Qp and suppose that K is complete for the valuation |·|, which extends the p-adic valuation. Vq is the closure of the set {aqn|n = 0,1,2,...} where a and q are two units of Zp, q not a root of unity. C(Vq → K) is the Banach space of continuous functions from Vq to K, equipped with the supremum norm. Our aim is to find normal bases (rn(x)) for C(Vq → K), where rn(x) does not have to be a polynomial.

Currently displaying 81 – 100 of 184