Displaying 161 – 180 of 184

Showing per page

The non-archimedian space BC(X) with the strict topology.

Nicole De Grande-De Kimpe, Samuel Navarro (1994)

Publicacions Matemàtiques

Let X be a zero-dimensional, Hausdorff topological space and K a field with non-trivial, non-archimedean valuation under which it is complete. Then BC(X) is the vector space of the bounded continuous functions from X to K. We obtain necessary and sufficient conditions for BC(X), equipped with the strict topology, to be of countable type and to be nuclear in the non-archimedean sense.

Towards a theory of some unbounded linear operators on p -adic Hilbert spaces and applications

Toka Diagana (2005)

Annales mathématiques Blaise Pascal

We are concerned with some unbounded linear operators on the so-called p -adic Hilbert space 𝔼 ω . Both the Closedness and the self-adjointness of those unbounded linear operators are investigated. As applications, we shall consider the diagonal operator on 𝔼 ω , and the solvability of the equation A u = v where A is a linear operator on 𝔼 ω .

Tree structure on the set of multiplicative semi-norms of Krasner algebras H(D).

K. Boussaf, N. Maïnetti, M. Hemdaoui (2000)

Revista Matemática Complutense

Let K be an algebraically closed field, complete for an ultra- metric absolute value, let D be an infinite subset of K and let H(D) be the set of analytic elements on D. We denote by Mult(H(D), UD) the set of semi-norms Phi of the K-vector space H(D) which are continuous with respect to the topology of uniform convergence on D and which satisfy further Phi(f g)=Phi(f) Phi(g) whenever f,g elements of H(D) such that fg element of H(D). This set is provided with the topology of simple convergence....

Two Families of Self-adjoint Indecomposable Operators in an Orthomodular Space

Carla Barrios Rodríguez (2008)

Annales mathématiques Blaise Pascal

Orthomodular spaces are the counterpart of Hilbert spaces for fields other than or . Both share numerous properties, foremost among them is the validity of the Projection theorem. Nevertheless in the study of bounded linear operators which started in [3], there appeared striking differences with the classical theory. In fact, in this paper we shall construct, on the canonical non-archimedean orthomodular space E of [5], two infinite families of self-adjoint bounded linear operators having no...

Una nota sobre las álgebras de Banach regulares no-arquimedianas.

Jesús M. Domínguez Gómez (1981)

Revista Matemática Hispanoamericana

Es bien conocido que el conjunto M de los ideales maximales de un álgebra de Banach compleja X es un espacio compacto y Hausdorff para la topología de Gelfand, y que X es isométricamente isomorfa al álgebra C(M,C) de las funciones continuas sobre M si y sólo si X es una B*-álgebra, es decir un álgebra de Banach con involución verificando ||x*x|| = ||x||2 (Gelfand-Naimark). En el caso no-arquimediano, X admite tal representación si y sólo si el subespacio vectorial engendrado por {e ∈ X | e2 = e,...

Weak bases in p -adic spaces

N. De Grande-De Kimpe, J. Kąkol, C. Perez-Garcia, W. H. Schikhof (2002)

Bollettino dell'Unione Matematica Italiana

We study polar locally convex spaces over a non-archimedean non-trivially valued complete field with a weak topological basis. We prove two completeness theorems and a Hahn-Banach type theorem for locally convex spaces with a weak Schauder basis.

Currently displaying 161 – 180 of 184