An embedding of Schwartz distributions in the algebra of asymptotic functions.
Let be an algebraically closed field of characteristic zero, complete for an ultrametric absolute value. We apply the -adic Nevanlinna theory to functional equations of the form , where , are meromorphic functions in , or in an “open disk”, satisfying conditions on the order of its zeros and poles. In various cases we show that and must be constant when they are meromorphic in all , or they must be quotients of bounded functions when they are meromorphic in an “open disk”. In particular,...
As a counterpart to classical topological vector spaces in the alternative set theory, biequivalence vector spaces (over the field of all rational numbers) are introduced and their basic properties are listed. A methodological consequence opening a new view towards the relationship between the algebraic and topological dual is quoted. The existence of various types of valuations on a biequivalence vector space inducing its biequivalence is proved. Normability is characterized in terms of total...
We show several examples of n.av̇alued fields with involution. Then, by means of a field of this kind, we introduce “n.aḢilbert spaces” in which the norm comes from a certain hermitian sesquilinear form. We study these spaces and the algebra of bounded operators which are defined on them and have an adjoint. Essential differences with respect to the usual case are observed.