Continuity at zero of semi-groups on L1 and differentiation of additive processes
We study a classification of κ-times integrated semigroups (for κ > 0) by their (uniform) rate of convergence at the origin: as t → 0 (0 ≤ α ≤ κ). By an improved generation theorem we characterize this behaviour by Hille-Yosida type estimates. Then we consider integrated semigroups with holomorphic extension and characterize their convergence at the origin, as well as the existence of boundary values, by estimates of the associated holomorphic semigroup. Various examples illustrate these results....
The paper deals with operator-valued positive definite kernels on a convex *-semigroup whose Kolmogorov-Aronszajn type factorizations induce *-semigroups of bounded shift operators. Any such kernel Φ has a canonical decomposition into a degenerate and a nondegenerate part. In case is commutative, Φ can be disintegrated with respect to some tight positive operator-valued measure defined on the characters of if and only if Φ is nondegenerate. It is proved that a representing measure of a positive...
We define tensor product decompositions of E₀-semigroups with a structure analogous to a classical theorem of Beurling. Such decompositions can be characterized by adaptedness and exactness of unitary cocycles. For CCR-flows we show that such cocycles are convergent.
We create a general framework for describing domains of functions of power-bounded operators given by power series with log-convex coefficients. This sheds new light on recent results of Assani, Derriennic, Lin and others. In particular, we resolve an open problem regarding the "one-sided ergodic Hilbert transform" formulated in a 2001 paper by Derriennic and Lin.