Displaying 281 – 300 of 451

Showing per page

On square functions associated to sectorial operators

Christian Le Merdy (2004)

Bulletin de la Société Mathématique de France

We give new results on square functions x F = 0 F ( t A ) x 2 d t t 1 / 2 p associated to a sectorial operator A on L p for 1 < p < . Under the assumption that A is actually R -sectorial, we prove equivalences of the form K - 1 x G x F K x G for suitable functions F , G . We also show that A has a bounded H functional calculus with respect to . F . Then we apply our results to the study of conditions under which we have an estimate ( 0 | C e - t A ( x ) | 2 d t ) 1 / 2 q M x p , when - A generates a bounded semigroup e - t A on L p and C : D ( A ) L q is a linear mapping.

On stability and robust stability of positive linear Volterra equations in Banach lattices

Satoru Murakami, Pham Ngoc (2010)

Open Mathematics

We study positive linear Volterra integro-differential equations in Banach lattices. A characterization of positive equations is given. Furthermore, an explicit spectral criterion for uniformly asymptotic stability of positive equations is presented. Finally, we deal with problems of robust stability of positive systems under structured perturbations. Some explicit stability bounds with respect to these perturbations are given.

On the Cauchy problem for convolution equations

(2013)

Colloquium Mathematicae

We consider one-parameter (C₀)-semigroups of operators in the space ' ( ; m ) with infinitesimal generator of the form ( G * ) | ' ( ; m ) where G is an M m × m -valued rapidly decreasing distribution on ℝⁿ. It is proved that the Petrovskiĭ condition for forward evolution ensures not only the existence and uniqueness of the above semigroup but also its nice behaviour after restriction to whichever of the function spaces ( ; m ) , L p ( ; m ) , p ∈ [1,∞], ( a ) ( ; m ) , a ∈ ]0,∞[, or the spaces L q ' ( ; m ) , q ∈ ]1,∞], of bounded distributions.

On the Character of Growth of a Non-Contracting Semigroup

Rozumenko, O. V. (2010)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 47A45.An estimation of the growth of a non-contracting semigroup Zt = exp(itA) where A is a non-dissipative operator with a two-dimensional imaginary component is given. Estimation is given in terms of the functional model in de Branges space.

On the exponential stability and dichotomy of C 0 -semigroups

Phóng Vũ (1999)

Studia Mathematica

A characterization of exponentially dichotomic and exponentially stable C 0 -semigroups in terms of solutions of an operator equation of Lyapunov type is presented. As a corollary a new and shorter proof of van Neerven’s recent characterization of exponential stability in terms of boundedness of convolutions of a semigroup with almost periodic functions is given.

On the nonlocal Cauchy problem for semilinear fractional order evolution equations

JinRong Wang, Yong Zhou, Michal Fečkan (2014)

Open Mathematics

In this paper, we develop the approach and techniques of [Boucherif A., Precup R., Semilinear evolution equations with nonlocal initial conditions, Dynam. Systems Appl., 2007, 16(3), 507–516], [Zhou Y., Jiao F., Nonlocal Cauchy problem for fractional evolution equations, Nonlinar Anal. Real World Appl., 2010, 11(5), 4465–4475] to deal with nonlocal Cauchy problem for semilinear fractional order evolution equations. We present two new sufficient conditions on existence of mild solutions. The first...

On the positivity of semigroups of operators

Roland Lemmert, Peter Volkmann (1998)

Commentationes Mathematicae Universitatis Carolinae

In a Banach space E , let U ( t ) ( t > 0 ) be a C 0 -semigroup with generating operator A . For a cone K E ...

On the range of a closed operator in an L 1 -space of vector-valued functions

Ryotaro Sato (2005)

Commentationes Mathematicae Universitatis Carolinae

Let X be a reflexive Banach space and A be a closed operator in an L 1 -space of X -valued functions. Then we characterize the range R ( A ) of A as follows. Let 0 λ n ρ ( A ) for all 1 n < , where ρ ( A ) denotes the resolvent set of A , and assume that lim n λ n = 0 and sup n 1 λ n ( λ n - A ) - 1 < . Furthermore, assume that there exists λ ρ ( A ) such that λ ( λ - A ) - 1 1 . Then f R ( A ) is equivalent to sup n 1 ( λ n - A ) - 1 f 1 < . This generalizes Shaw’s result for scalar-valued functions.

Currently displaying 281 – 300 of 451