Analysis on real affine -varieties.
We prove that any elliptic operator of second order in variational form is the infinitesimal generator of an analytic semigroup in the functional space consinsting of all derivatives of hölder-continuous functions in where is a domain in not necessarily bounded. We characterize, moreover the domain of the operator and the interpolation spaces between this and the space . We prove also that the spaces can be considered as extrapolation spaces relative to suitable non-variational operators....
We give sufficient conditions on an operator space E and on a semigroup of operators on a von Neumann algebra M to obtain a bounded analytic or R-analytic semigroup ( on the vector valued noncommutative -space . Moreover, we give applications to the functional calculus of the generators of these semigroups, generalizing some earlier work of M. Junge, C. Le Merdy and Q. Xu.
We study the analyticity of the semigroups generated by some degenerate second order differential operators in the space C([α,β]), where [α,β] is a bounded real interval. The asymptotic behaviour and regularity with respect to the space variable are also investigated.
We consider a semigroup acting on real-valued functions defined in a Hilbert space H, arising as a transition semigroup of a given stochastic process in H. We find sufficient conditions for analyticity of the semigroup in the space, where μ is a gaussian measure in H, intrinsically related to the process. We show that the infinitesimal generator of the semigroup is associated with a bilinear closed coercive form in . A closability criterion for such forms is presented. Examples are also given....
Recently, we have developed the necessary and sufficient conditions under which a rational function approximates the semigroup of operators generated by an infinitesimal operator . The present paper extends these results to an inhomogeneous equation .
The methods of arbitrarily high orders of accuracy for the solution of an abstract ordinary differential equation are studied. The right-hand side of the differential equation under investigation contains an unbounded operator which is an infinitesimal generator of a strongly continuous semigroup of operators. Necessary and sufficient conditions are found for a rational function to approximate the given semigroup with high accuracy.