Majoration des semi-groupes de contractions de L1 et applications
We give criteria for domination of strongly continuous semigroups in ordered Banach spaces that are not necessarily lattices, and thus obtain generalizations of certain results known in the lattice case. We give applications to semigroups generated by differential operators in function spaces which are not lattices.
This note contains a survey of recent results concerning asymptotic properties of Markov operators and semigroups. Some biological and physical applications are given.
Several abstract model problems of elliptic and parabolic type with inhomogeneous initial and boundary data are discussed. By means of a variant of the Dore-Venni theorem, real and complex interpolation, and trace theorems, optimal -regularity is shown. By means of this purely operator theoretic approach, classical results on -regularity of the diffusion equation with inhomogeneous Dirichlet or Neumann or Robin condition are recovered. An application to a dynamic boundary value problem with surface...
We consider some non-autonomous second order Cauchy problems of the form ü + B(t)u̇ + A(t)u = f(t ∈ [0,T]), u(0) = u̇(0) = 0. We assume that the first order problem u̇ + B(t)u = f(t ∈ [0,T]), u(0) = 0, has -maximal regularity. Then we establish -maximal regularity of the second order problem in situations when the domains of B(t₁) and A(t₂) always coincide, or when A(t) = κB(t).
We characterize existence and uniqueness of solutions for an inhomogeneous abstract delay equation in Hölder spaces. The main tool is the theory of operator-valued Fourier multipliers.
We consider the maximal regularity problem for the discrete time evolution equation for all n ∈ ℕ₀, u₀ = 0, where T is a bounded operator on a UMD space X. We characterize the discrete maximal regularity of T by two types of conditions: firstly by R-boundedness properties of the discrete time semigroup and of the resolvent R(λ,T), secondly by the maximal regularity of the continuous time evolution equation u’(t) - Au(t) = f(t) for all t > 0, u(0) = 0, where A:= T - I. By recent results of...
We compute explicitly the best constants and, by solving some functional equations, we find all maximizers for homogeneous Strichartz estimates for the Schrödinger equation and for the wave equation in the cases when the Lebesgue exponent is an even integer.
We study mild n times integrated C-existence families without the assumption of exponential boundedness. We present several equivalent conditions for these families. Hille-Yosida type necessary and sufficient conditions are given for the exponentially bounded case.