Ideals in algebras of unbounded operators
We propose the study of some questions related to the Dunkl-Hermite semigroup. Essentially, we characterize the images of the Dunkl-Hermite-Sobolev space, and , , under the Dunkl-Hermite semigroup. Also, we consider the image of the space of tempered distributions and we give Paley-Wiener type theorems for the transforms given by the Dunkl-Hermite semigroup.
In this paper, we consider a class of infinite dimensional stochastic impulsive evolution inclusions. We prove existence of solutions and study properties of the solution set. It is also indicated how these results can be used in the study of control systems driven by vector measures.
We study the infinitesimal generators of evolutions of linear mappings on the space of polynomials, which correspond to a special class of Markov processes with polynomial regressions called quadratic harnesses. We relate the infinitesimal generator to the unique solution of a certain commutation equation, and we use the commutation equation to find an explicit formula for the infinitesimal generator of free quadratic harnesses.