Analytic Singularities and Microhyperbolic Boundary Value Problems.
We present a pair of conjectural formulas that compute the leading term of the spectral asymptotics of a Schrödinger operator on with quasi-homogeneous polynomial magnetic and electric fields. The construction is based on the orbit method due to Kirillov. It makes sense for any nilpotent Lie algebra and is related to the geometry of coadjoint orbits, as well as to the growth properties of certain “algebraic integrals,” studied by Nilsson. By using the direct variational method, we prove that the...
Let be a metric measure space endowed with a distance and a nonnegative Borel doubling measure . Let be a non-negative self-adjoint operator of order on . Assume that the semigroup generated by satisfies the Davies-Gaffney estimate of order and satisfies the Plancherel type estimate. Let be the Hardy space associated with We show the boundedness of Stein’s square function arising from Bochner-Riesz means associated to from Hardy spaces to , and also study the boundedness...
Let -div be a second order elliptic operator with real, symmetric, bounded measurable coefficients on or on a bounded Lipschitz domain subject to Dirichlet boundary condition. For any fixed , a necessary and sufficient condition is obtained for the boundedness of the Riesz transform on the space. As an application, for , we establish the boundedness of Riesz transforms on Lipschitz domains for operators with coefficients. The range of is sharp. The closely related boundedness of ...
Let with a,b ≥ 2. We consider the C₀-semigroups generated by this operator on the spaces of continuous functions, respectively square integrable functions. The connection between these semigroups together with suitable approximation processes is studied. Also, some qualitative and quantitative properties are derived.
On considère une solution , assez régulière, d’une équation aux dérivées partielles non linéaire. Si est conormale par rapport a une hypersurface simplement caractéristique pour l’équation linéarisée, on étudie l’équation de transport satisfaite par son symbole principal, et on en déduit la propagation de la propriété “ est conormale classique”.