A sufficient condition of type (...) for Tame Splitting of short exact sequences of Fréchet spaces.
On décrit une formule de trace [S] pour les résonances, qui est valable en toute dimension et pour les perturbations à longue portée du Laplacien. On établit une nouvelle application à l’éxistence de nombreuses résonances pour des opérateurs de Schrödinger semi-classiques.
The Fourier expansion in eigenfunctions of a positive operator is studied with the help of abstract functions of this operator. The rate of convergence is estimated in terms of its eigenvalues, especially for uniform and absolute convergence. Some particular results are obtained for elliptic operators and hyperbolic equations.
On donne dans cet exposé des bornes inférieures universelles, en limite semiclassique, de la hauteur des résonances de forme associées aux opérateurs de Schrödinger à l’extérieur d’obstacles avec des conditions au bord de Dirichlet ou de Neumann et des potentiels analytiquement dilatables et tendant vers à l’infini. Ces bornes inférieures sont exponentiellement petites par rapport à la constante de Planck.
Si annunziano alcuni risultati di esistenza e unicità per l’equazione astratta singolare nel caso iperbolico.
Asymptotics with sharp remainder estimates are recovered for number of eigenvalues of operator crossing level as runs from to , . Here is periodic matrix operator, matrix is positive, periodic with respect to first copy of and decaying as second copy of goes to infinity, either belongs to a spectral gap of or is one its ends. These problems are first treated in papers of M. Sh. Birman, M. Sh. Birman-A. Laptev and M. Sh. Birman-T. Suslina.
In this paper, we consider elliptic differential operators on compact manifolds with a random perturbation in the 0th order term and show under fairly weak additional assumptions that the large eigenvalues almost surely distribute according to the Weyl law, well-known in the self-adjoint case.