Displaying 201 – 220 of 673

Showing per page

Integral equations and time varying linear systems.

Lucas Jódar (1986)

Stochastica

In this paper we study the resolution problem of an integral equation with operator valued kernel. We prove the equivalence between this equation and certain time varying linear operator system. Sufficient conditions for solving the problem and explicit expressions of the solutions are given.

Integral operators generated by Mercer-like kernels on topological spaces

M. H. Castro, V. A. Menegatto, A. P. Peron (2012)

Colloquium Mathematicae

We analyze some aspects of Mercer's theory when the integral operators act on L²(X,σ), where X is a first countable topological space and σ is a non-degenerate measure. We obtain results akin to the well-known Mercer's theorem and, under a positive definiteness assumption on the generating kernel of the operator, we also deduce series representations for the kernel, traceability of the operator and an integration formula to compute the trace. In this way, we upgrade considerably similar results...

Integral representations of unbounded operators by infinitely smooth kernels

Igor Novitskiî (2005)

Open Mathematics

In this paper, we prove that every unbounded linear operator satisfying the Korotkov-Weidmann characterization is unitarily equivalent to an integral operator in L 2(R), with a bounded and infinitely smooth Carleman kernel. The established unitary equivalence is implemented by explicitly definable unitary operators.

Integro-differential equations with time-varying delay

Chocholatý, Pavol (2013)

Programs and Algorithms of Numerical Mathematics

Integro-differential equations with time-varying delay can provide us with realistic models of many real world phenomena. Delayed Lotka-Volterra predator-prey systems arise in ecology. We investigate the numerical solution of a system of two integro-differential equations with time-varying delay and the given initial function. We will present an approach based on q -step methods using quadrature formulas.

Inverse du Laplacien discret dans le problème de Poisson-Dirichlet à deux dimensions sur un rectangle

Jean Chanzy (2006)

Annales de la faculté des sciences de Toulouse Mathématiques

Ce travail a pour objet l’étude d’une méthode de « discrétisation » du Laplacien dans le problème de Poisson à deux dimensions sur un rectangle, avec des conditions aux limites de Dirichlet. Nous approchons l’opérateur Laplacien par une matrice de Toeplitz à blocs, eux-mêmes de Toeplitz, et nous établissons une formule donnant les blocs de l’inverse de cette matrice. Nous donnons ensuite un développement asymptotique de la trace de la matrice inverse, et du déterminant de la matrice de Toeplitz....

Kernel theorems in spaces of generalized functions

Antoine Delcroix (2010)

Banach Center Publications

In analogy to the classical isomorphism between ((ℝⁿ), ' ( m ) ) and ' ( m + n ) (resp. ( ( ) , ' ( m ) ) and ' ( m + n ) ), we show that a large class of moderate linear mappings acting between the space C ( ) of compactly supported generalized functions and (ℝⁿ) of generalized functions (resp. the space ( ) of Colombeau rapidly decreasing generalized functions and the space τ ( ) of temperate ones) admits generalized integral representations, with kernels belonging to specific regular subspaces of ( m + n ) (resp. τ ( m + n ) ). The main novelty is to use accelerated...

Currently displaying 201 – 220 of 673