An implicit iterative scheme for an infinite countable family of asymptotically nonexpansive mappings in Banach spaces.
A class of infinite-dimensional dissipative dynamical systems is defined for which there exists a unique equilibrium point, and the rate of convergence to this point of the trajectories of a dynamical system from the above class is exponential. All the trajectories of the system converge to this point as t → +∞, no matter what the initial conditions are. This class consists of strongly dissipative systems. An example of such systems is provided by passive systems in network theory (see, e.g., MR0601947...
2000 Mathematics Subject Classification: 90C26, 90C20, 49J52, 47H05, 47J20.In this paper we obtain some simple characterizations of the solution sets of a pseudoconvex program and a variational inequality. Similar characterizations of the solution set of a quasiconvex quadratic program are derived. Applications of these characterizations are given.
In this note we provide regularity conditions of closedness type which guarantee some surjectivity results concerning the sum of two maximal monotone operators by using representative functions. The first regularity condition we give guarantees the surjectivity of the monotone operator S(· + p) + T(·), where p ɛ X and S and T are maximal monotone operators on the reflexive Banach space X. Then, this is used to obtain sufficient conditions for the surjectivity of S + T and for the situation when...