Page 1

Displaying 1 – 18 of 18

Showing per page

Characterizations of the Solution Sets of Generalized Convex Minimization Problems

Ivanov, Vsevolod (2003)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 90C26, 90C20, 49J52, 47H05, 47J20.In this paper we obtain some simple characterizations of the solution sets of a pseudoconvex program and a variational inequality. Similar characterizations of the solution set of a quasiconvex quadratic program are derived. Applications of these characterizations are given.

Closedness type regularity conditions for surjectivity results involving the sum of two maximal monotone operators

Radu Ioan Boţ, Sorin-Mihai Grad (2011)

Open Mathematics

In this note we provide regularity conditions of closedness type which guarantee some surjectivity results concerning the sum of two maximal monotone operators by using representative functions. The first regularity condition we give guarantees the surjectivity of the monotone operator S(· + p) + T(·), where p ɛ X and S and T are maximal monotone operators on the reflexive Banach space X. Then, this is used to obtain sufficient conditions for the surjectivity of S + T and for the situation when...

Construction of a common element for the set of solutions of fixed point problems and generalized equilibrium problems in Hilbert spaces

Muhammad Aqeel Ahmad Khan (2016)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

In this paper, we propose and analyse an iterative algorithm for the approximation of a common solution for a finite family of k-strict pseudocontractions and two finite families of generalized equilibrium problems in the setting of Hilbert spaces. Strong convergence results of the proposed iterative algorithm together with some applications to solve the variational inequality problems are established in such setting. Our results generalize and improve various existing results in the current literature....

Convergence results of iterative algorithms for the sum of two monotone operators in reflexive Banach spaces

Yan Tang, Ratthaprom Promkam, Prasit Cholamjiak, Pongsakorn Sunthrayuth (2022)

Applications of Mathematics

The aim of this paper is to propose two modified forward-backward splitting algorithms for zeros of the sum of a maximal monotone operator and a Bregman inverse strongly monotone operator in reflexive Banach spaces. We prove weak and strong convergence theorems of the generated sequences by the proposed methods under some suitable conditions. We apply our results to study the variational inequality problem and the equilibrium problem. Finally, a numerical example is given to illustrate the proposed...

Coupled fixed points of mixed monotone operators on probabilistic Banach spaces

Ismat Beg, Abdul Latif, Rashid Ali, Akbar Azam (2001)

Archivum Mathematicum

The existence of minimal and maximal fixed points for monotone operators defined on probabilistic Banach spaces is proved. We obtained sufficient conditions for the existence of coupled fixed point for mixed monotone condensing multivalued operators.

Currently displaying 1 – 18 of 18

Page 1