Nonlocal impulsive Cauchy problems for evolution equations.
We consider a neutral type operator differential inclusion and apply the topological degree theory for condensing multivalued maps to justify the question of existence of its periodic solution. By using the averaging method, we apply the abstract result to an inclusion with a small parameter. As example, we consider a delay control system with the distributed control.
We prove in particular that Banach spaces of the form C₀(Ω), where Ω is a locally compact space, enjoy a quantitative version of the reciprocal Dunford-Pettis property.
In this paper we examine the set of weakly continuous solutions for a Volterra integral equation in Henstock-Kurzweil-Pettis integrability settings. Our result extends those obtained in several kinds of integrability settings. Besides, we prove some new fixed point theorems for function spaces relative to the weak topology which are basic in our considerations and comprise the theory of differential and integral equations in Banach spaces.
In this paper, the concept of multi-valued weak contraction of Berinde and Berinde [8] for the Picard iteration in a complete metric space is extended to the case of multi-valued weak contraction for the Jungck iteration in a complete b-metric space. While our main results generalize the recent results of Berinde and Berinde [8], they also extend, improve and unify several classical results pertainning to single and multi-valued contractive mappings in the fixed point theory. Our results also improve...