Non-linear eigenvalue problems and bifurcations for differentiable multivalued maps
AMS Subj. Classification: 47J10, 47H30, 47H10We study some possibilities of nonlinear spectral theories for solving nonlinear operator equations. The main aim is to research a spectrum and establish some kind of nonlinear Fredholm alternative for Hammerstein operator KF.
Let be complex vector spaces. Recently, Park and Th.M. Rassias showed that if a mapping satisfies for all , , then the mapping satisfies for all , . Furthermore, they proved the generalized Hyers-Ulam stability of the functional equation () in complex Banach spaces. In this paper, we will adopt the idea of Park and Th. M. Rassias to prove the stability of a quadratic functional equation with complex involution via fixed point method.
Some conditions for the existence and uniqueness of solutions of the nonlocal elliptic problem , are given.
In this paper we consider a coupled system of second-order boundary value problems with nonlocal, nonlinear boundary conditions, and we examine conditions under which such problems will have at least one positive solution. By imposing only an asymptotic growth condition on the nonlinear boundary functions, we are able to achieve generalizations over existing works and, in particular, we allow for the nonlocal terms to be able to be realized as Lebesgue-Stieltjes integrals possessing signed Borel...
The aim of this paper, is to introduce the convex structure (specially, Takahashi convex structure) on modular spaces. Moreover, we are interested in proving some common fixed point theorems for non-self mappings in modular space.