Displaying 41 – 60 of 259

Showing per page

A fixed point theorem for a multivalued non-self mapping

Billy E. Rhoades (1996)

Commentationes Mathematicae Universitatis Carolinae

We prove a fixed point theorem for a multivalued non-self mapping in a metrically convex complete metric space. This result generalizes Theorem 1 of Itoh [2].

A fixed point theorem for nonexpansive compact self-mapping

T. D. Narang (2014)

Annales UMCS, Mathematica

A mapping T from a topological space X to a topological space Y is said to be compact if T(X) is contained in a compact subset of Y . The aim of this paper is to prove the existence of fixed points of a nonexpansive compact self-mapping defined on a closed subset having a contractive jointly continuous family when the underlying space is a metric space. The proved result generalizes and extends several known results on the subject

A fixed point theorem for non-self multi-maps in metric spaces

Bapurao Chandra Dhage (1999)

Commentationes Mathematicae Universitatis Carolinae

A fixed point theorem is proved for non-self multi-valued mappings in a metrically convex complete metric space satisfying a slightly stronger contraction condition than in Rhoades [3] and under a weaker boundary condition than in Itoh [2] and Rhoades [3].

Currently displaying 41 – 60 of 259