Existence principles for inclusions of Hammerstein type involving noncompact acyclic multivalued maps.
In this paper we prove an existence theorem for the Hammerstein integral equation , where the integral is taken in the sense of Pettis. In this theorem continuity assumptions for f are replaced by weak sequential continuity and the compactness condition is expressed in terms of the measures of weak noncompactness. Our equation is considered in general Banach spaces.
We present two existence results for the Dirichlet elliptic inclusion with an upper semicontinuous multivalued right-hand side in exponential-type Orlicz spaces involving a vector Laplacian, subject to Dirichlet boundary conditions on a domain Ω⊂ ℝ². The first result is obtained via the multivalued version of the Leray-Schauder principle together with the Nakano-Dieudonné sequential weak compactness criterion. The second result is obtained by using the nonsmooth variational technique together with...
In this work, we establish new Furi–Pera type fixed point theorems for the sum and the product of abstract nonlinear operators in Banach algebras; one of the operators is completely continuous and the other one is -Lipchitzian. The Kuratowski measure of noncompactness is used together with recent fixed point principles. Applications to solving nonlinear functional integral equations are given. Our results complement and improve recent ones in [10], [11], [17].
The paper is concerned with the Nemitskii operator in Hölder spaces. Namely conditions are given to ensure acting, continuity, Lipschitz and differentiability properties.
Let (Ω,μ) be a measure space, E be an arbitrary separable Banach space, be the dual equipped with the weak* topology, and g:Ω × E → ℝ be a Carathéodory function which is Lipschitz continuous on each ball of E for almost all s ∈ Ω. Put . Consider the integral functional G defined on some non--type Banach space X of measurable functions x: Ω → E. We present several general theorems on sufficient conditions under which any element γ ∈ X* of Clarke’s generalized gradient (multivalued C-subgradient)...
The existence of solutions of Hammerstein equations in the space of bounded and continuous functions is proved. It is obtained by the Schauder fixed point theorem using a compactness theorem. The result is applied to Wiener-Hopf equations and to ODE's.
The paper studies a construction of nontrivial solution for a class of Hammerstein–Nemytskii type nonlinear integral equations on half-line with noncompact Hammerstein integral operator, which belongs to space . This class of equations is the natural generalization of Wiener-Hopf type conservative integral equations. Examples are given to illustrate the results. For one type of considering equations continuity and uniqueness of the solution is established.
The recent development of mathematical methods of investigation of problems with hysteresis has shown that the structure of the hysteresis memory plays a substantial role. In this paper we characterize the hysteresis operators which exhibit a memory effect of the Preisach type (memory preserving operators). We investigate their properties (continuity, invertibility) and we establish some relations between special classes of such operators (Preisach, Ishlinskii and Nemytskii operators). For a general...
Phase-field systems as mathematical models for phase transitions have drawn a considerable attention in recent years. However, while they are suitable for capturing many of the experimentally observed phenomena, they are only of restricted value in modelling hysteresis effects occurring during phase transition processes. To overcome this shortcoming of existing phase-field theories, the authors have recently proposed a new approach to phase-field models which is based on the mathematical theory...