Previous Page 2

Displaying 21 – 27 of 27

Showing per page

On vector functions of bounded convexity

Libor Veselý, Luděk Zajíček (2008)

Mathematica Bohemica

Let X be a normed linear space. We investigate properties of vector functions F : [ a , b ] X of bounded convexity. In particular, we prove that such functions coincide with the delta-convex mappings admitting a Lipschitz control function, and that convexity K a b F is equal to the variation of F + ' on [ a , b ) . As an application, we give a simple alternative proof of an unpublished result of the first author, containing an estimate of convexity of a composed mapping.

Opérateurs dissipatifs et semi-groupes dans les espaces de fonctions continues

Jean-Pierre Roth (1976)

Annales de l'institut Fourier

Soit X un espace localement compact. Tout opérateur dissipatif de domaine dense dans C 0 ( ( X ) est limite d’opérateurs dissipatifs bornés. Ce résultat permet, dans le cas où X est un espace homogène, de démontrer que tout opérateur dissipatif, de domaine dense et invariant sur C 0 ( X ) se prolonge en le générateur infinitésimal d’un semi-groupe à contraction invariant sur C 0 ( X ) .À tout opérateur A vérifiant le principe du maximum positif sur C 0 ( X , R ) et de domaine assez riche, on associe un opérateur bilinéaire B , appelé...

Currently displaying 21 – 27 of 27

Previous Page 2