The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 461 –
467 of
467
This note presents a theorem which gives an answer to a conjecture which appears in the book Matrix Norms and Their Applications by Belitskiĭ and Lyubich and concerns the global asymptotic stability in the Schauder fixed point theorem. This is followed by a theorem which states a necessary and sufficient condition for the iterates of a holomorphic function with a fixed point to converge pointwise to this point.
A class of infinite-dimensional dissipative dynamical systems is defined for which there exists a unique equilibrium point, and the rate of convergence to this point of the trajectories of a dynamical system from the above class is exponential. All the trajectories of the system converge to this point as t → +∞, no matter what the initial conditions are. This class consists of strongly dissipative systems. An example of such systems is provided by passive systems in network theory (see, e.g., MR0601947...
Let D be a hyperbolic convex domain in a complex Banach space. Let the mapping F ∈ Hol(D,D) be bounded on each subset strictly inside D, and have a nonempty fixed point set ℱ in D. We consider several methods for constructing retractions onto ℱ under local assumptions of ergodic type. Furthermore, we study the asymptotic behavior of the Cesàro averages of one-parameter semigroups generated by holomorphic mappings.
Currently displaying 461 –
467 of
467