A generalized iterative algorithm for generalized successively pseudocontractions.
Kumar, Krishna, Sharma, Birendra Kumar (2006)
Applied Mathematics E-Notes [electronic only]
Onjai-Uea, Nawitcha, Kumam, Poom (2010)
Journal of Inequalities and Applications [electronic only]
Enayet U, Tarafdar, Ghanshyam B. Mehta (1987)
Commentationes Mathematicae Universitatis Carolinae
Tudor Zamifirescu (1993)
Mathematische Zeitschrift
Leonid V. Kovalev (2007)
Studia Mathematica
We establish a connection between generalized accretive operators introduced by F. E. Browder and the theory of quasisymmetric mappings in Banach spaces pioneered by J. Väisälä. The interplay of the two fields allows for geometric proofs of continuity, differentiability, and surjectivity of generalized accretive operators.
Milojević, Petronije S. (2006)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Pathak, Hemant Kumar, Tiwari, Rakesh (2011)
Banach Journal of Mathematical Analysis [electronic only]
Mawhin, Jean, Ureña, Antonio J. (2002)
Journal of Inequalities and Applications [electronic only]
Niels Jacob (1987)
Aequationes mathematicae
Peter Hess (1974)
Mathematische Annalen
Jaiboon, Chaichana, Kumam, Poom (2009)
Fixed Point Theory and Applications [electronic only]
Moudafi, A. (2004)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Saewan, Siwaporn, Kumam, Poom (2010)
Abstract and Applied Analysis
Cholamjiak, Prasit (2009)
Fixed Point Theory and Applications [electronic only]
Kamraksa, Uthai, Wangkeeree, Rabian (2010)
Journal of Inequalities and Applications [electronic only]
Cianciaruso, Filomena, Marino, Giuseppe, Muglia, Luigi, Yao, Yonghong (2010)
Fixed Point Theory and Applications [electronic only]
Li, Hong-Gang, Xu, An Jian, Jin, Mao Ming (2010)
Fixed Point Theory and Applications [electronic only]
Peng, Jian-Wen, Wu, Soon-Yi, Fan, Gang-Lun (2011)
Fixed Point Theory and Applications [electronic only]
Gary H. Meisters, Czesław Olech (1990)
Annales Polonici Mathematici
Romaguera, Salvador (2010)
Fixed Point Theory and Applications [electronic only]