Robustness of Mann type algorithm with perturbed mapping for nonexpansive mappings in Banach spaces.
Let X be a real Banach space and G ⊂ X open and bounded. Assume that one of the following conditions is satisfied: (i) X* is uniformly convex and T:Ḡ→ X is demicontinuous and accretive; (ii) T:Ḡ→ X is continuous and accretive; (iii) T:X ⊃ D(T)→ X is m-accretive and Ḡ ⊂ D(T). Assume, further, that M ⊂ X is pathwise connected and such that M ∩ TG ≠ ∅ and . Then . If, moreover, Case (i) or (ii) holds and T is of type , or Case (iii) holds and T is of type , then M ⊂ TG. Various results of Morales,...
Iterative methods based on small functions are used both to show local surjectivity of certain operators and a fixed point property of mappings on scales of complete metric spaces.
We prove the existence of a sequence satisfying , where f is a function whose second order Fréchet derivative ∇²f satifies a center-Hölder condition and F is a set-valued map from a Banach space X to the subsets of a Banach space Y. We show that the convergence of this method is superquadratic.
In this paper, we establish some generalizations to approximate common fixed points for selfmappings in a normed linear space using the modified Ishikawa iteration process with errors in the sense of Liu [10] and Rafiq [14]. We use a more general contractive condition than those of Rafiq [14] to establish our results. Our results, therefore, not only improve a multitude of common fixed point results in literature but also generalize some of the results of Berinde [3], Rhoades [15] and recent results...