Displaying 21 – 40 of 72

Showing per page

Instability of Turing type for a reaction-diffusion system with unilateral obstacles modeled by variational inequalities

Martin Väth (2014)

Mathematica Bohemica

We consider a reaction-diffusion system of activator-inhibitor type which is subject to Turing's diffusion-driven instability. It is shown that unilateral obstacles of various type for the inhibitor, modeled by variational inequalities, lead to instability of the trivial solution in a parameter domain where it would be stable otherwise. The result is based on a previous joint work with I.-S. Kim, but a refinement of the underlying theoretical tool is developed. Moreover, a different regime of parameters...

Integrable solutions of a functional-integral equation.

Józef Banas, Zygmunt Knap (1989)

Revista Matemática de la Universidad Complutense de Madrid

This paper contains a theorem on the existence of monotonic and integrable solutions of a functional-integral equation. The proof of that theorem is based on the technique associated with the notion of a measure of weak noncompactness.

Integral control of infinite-dimensional systems in the presence of hysteresis: an input-output approach

Hartmut Logemann, Eugene P. Ryan, Ilya Shvartsman (2007)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is concerned with integral control of systems with hysteresis. Using an input-output approach, it is shown that application of integral control to the series interconnection of either (a) a hysteretic input nonlinearity, an L2-stable, time-invariant linear system and a non-decreasing globally Lipschitz static output nonlinearity, or (b) an L2-stable, time-invariant linear system and a hysteretic output nonlinearity, guarantees, under certain assumptions, tracking of constant reference...

Interior proximal method for variational inequalities on non-polyhedral sets

Alexander Kaplan, Rainer Tichatschke (2007)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Interior proximal methods for variational inequalities are, in fact, designed to handle problems on polyhedral convex sets or balls, only. Using a slightly modified concept of Bregman functions, we suggest an interior proximal method for solving variational inequalities (with maximal monotone operators) on convex, in general non-polyhedral sets, including in particular the case in which the set is described by a system of linear as well as strictly convex constraints. The convergence analysis of...

Currently displaying 21 – 40 of 72