Global existence for semilinear parabolic systems.
We consider boundary value problems for nonlinear th-order eigenvalue problem where and for some , and for , and , where . We investigate the global structure of positive solutions by using Rabinowitz’s global bifurcation theorem.
We establish global existence and scattering for radial solutions to the energy-critical focusing Hartree equation with energy and Ḣ¹ norm less than those of the ground state in , d ≥ 5.
The gradient method is developed for non-injective non-linear operators in Hilbert space that satisfy a translation invariance condition. The focus is on a class of non-differentiable operators. Linear convergence in norm is obtained. The method can be applied to quasilinear elliptic boundary value problems with Neumann boundary conditions.
We deal with a class on nonlinear Schrödinger equations (NLS) with potentials , , and , . Working in weighted Sobolev spaces, the existence of ground states belonging to is proved under the assumption that for some . Furthermore, it is shown that are spikes concentrating at a minimum point of , where .