Displaying 41 – 60 of 154

Showing per page

On mesh independence and Newton-type methods

Owe Axelsson (1993)

Applications of Mathematics

Mesh-independent convergence of Newton-type methods for the solution of nonlinear partial differential equations is discussed. First, under certain local smoothness assumptions, it is shown that by properly relating the mesh parameters H and h for a coarse and a fine discretization mesh, it suffices to compute the solution of the nonlinear equation on the coarse mesh and subsequently correct it once using the linearized (Newton) equation on the fine mesh. In this way the iteration error will be...

On monotone-like mappings in Orlicz-Sobolev spaces

Vesa Mustonen, Matti Tienari (1999)

Mathematica Bohemica

We study the mappings of monotone type in Orlicz-Sobolev spaces. We introduce a new class ( S m ) as a generalization of ( S + ) and extend the definition of quasimonotone map. We also prove existence results for equations involving monotone-like mappings.

On periodic motions of a two dimensional Toda type chain

Gianni Mancini, P. N. Srikanth (2005)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we consider a chain of strings with fixed end points coupled with nearest neighbour interaction potential of exponential type, i.e. ϕ t t i - ϕ x x i = exp ( ϕ i + 1 - ϕ i ) - exp ( ϕ i - ϕ i - 1 ) 0 < x < π , t , i ( T C ) ϕ i ( 0 , t ) = ϕ i ( π , t ) = 0 t , i . We consider the case of “closed chains” i.e. ϕ i + N = ϕ i i and some N and look for solutions which are peirodic in time. The existence of periodic solutions for the dual problem is proved in Orlicz space setting.

On periodic motions of a two dimensional Toda type chain

Gianni Mancini, P. N. Srikanth (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we consider a chain of strings with fixed end points coupled with nearest neighbour interaction potential of exponential type, i.e. ϕ t t i - ϕ x x i = exp ( ϕ i + 1 - ϕ i ) - exp ( ϕ i - ϕ i - 1 ) 0 < x < π , t I R , i Z Z ( TC ) ϕ i ( 0 , t ) = ϕ i ( π , t ) = 0 t , i . We consider the case of “closed chains" i.e. ϕ i + N = ϕ i i Z Z and some N I N and look for solutions which are peirodic in time. The existence of periodic solutions for the dual problem is proved in Orlicz space setting.

On periodic solutions of non-autonomous second order Hamiltonian systems

Xingyong Zhang, Yinggao Zhou (2010)

Applications of Mathematics

The purpose of this paper is to study the existence of periodic solutions for the non-autonomous second order Hamiltonian system u ¨ ( t ) = F ( t , u ( t ) ) , a.e. t [ 0 , T ] , u ( 0 ) - u ( T ) = u ˙ ( 0 ) - u ˙ ( T ) = 0 . Some new existence theorems are obtained by the least action principle.

Currently displaying 41 – 60 of 154